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ABSTRACT 

A method for tracking neutrons through a slab penetrated by a helical voided duct is 
presented and verified. FORTRAN listings of computer subroutines that perform the 
numerical analysis are included; these subroutines a re  designed to be used with FASTER, 
a high-efficiency Monte Carlo code. Neutron number spectra were calculated at several  
points in and near the emergent end of a duct through a 20- and a 100-centimeter thick 
water slab having a point source at  the center of the inlet. 
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HELICAL DUCT GEOMETRY ROUTINE FOR THE SHIELDING 

COMPUTER PROGRAM " FASTER" 

by Thomas M. Jordan* a n d  M i l l a r d  L. Woh I  

Lewis Research Center 

SUMMARY 

A method for tracking neutrons through slabs penetrated by helical voided ducts is 
presented and verified by means of the FASTER computer code. A point fission source 
is located at the center of the entrant mouth of the duct. Neutron number spectra com- 
puted at  point detectors in and near the emergent mouth of the duct are compared with 
similar results computed by the FASTER code and the 05R code using cylindrical geom- 
etry to describe the duct. The helical duct is given a very large pitch to simulate a 
cylindrical duct within the slabs considered. The comparison of number spectra is al- 
most exact, verifying the techniques developed herein. FORTRAN listings of computer 
subroutines that perform the numerical analysis are included; these subroutines are 
designed to be used in conjunction with FASTER, a high-efficiency Monte Carlo code. 

INTRODUCTION 

A useful reactor coolant flow passage geometry is that of a helicoid, or a helical 
tubular duct. This duct configuration has the dual advantage of reducing radiation stream- 
ing through a shield and permitting low coolant pressure drop. 

In order to track neutrons and gamma rays through such a complex geometric con- 
figuration, subroutines are written to be used with the FASTER code. Sample problems 
(ref. l), previously run with cylindrical ducts with the FASTER and 05R codes, were 

5 solved using a helical duct; this was done by assigning a pitch of 10 centimeters to a 
helicoid penetrating a 20- and a 100-centimeter-thick water slab. Thus, the important 
within-slab region of the helicoid is essentially cylindrical. 

in and near the emergent mouth of a duct having a point fission neutron source at the 
Agreement was obtained for the neutron number spectrum at several point detectors 

*ART Research Corporation, Los Angeles, California. 



center of one end of the duct. This agreement verified the helical duct geometry handling 
subroutines. 

A NALY S 1 S 

The equation of the helicoid is developed by using the fact that the intersection of the 
surface and a cutting plane normal to the centerline of the helicoid is circular. The pa- 
rametric equations of the duct centerline are 

x = R COS wz (14 

where w = 2 ~ / d ,  d is the pitch of the helical centerline, ahd R is the perpendicular 
distance from the axis of the cylinder around which the helicoid is wound to the helical 
centerline. 

at an arbitrary azimuthal angle 8. Solving for the equivalent z-coordinate gives 
zo = 8 / w .  A coordinate system is centered at this point so that its y'-axis is tangent to 
the helical centerline and its x'-axis is along the cylindrical radius vector as in sketch (a): 

A point (the origin of the double primed coordinate system is sketch (a)) is first fixed 

In the primed coordinate system, the intersection of the unwound helical duct with 
the cutting plane has the following equation: 

where a is the inner radius of the duct. Performing a rotation q about the x'-axis, 
the appropriate transformation equations become 
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y' = y" cos 'p + z" sin 'p 

1 - - d sin Q = 
+ (21rR)2]~/~ (1 + w 2 R 2 y  

- OR - 2aR cos (D = ' 

+(2a~)2]1/2 ( l + w  2 R )  2 

( 3 4  

or 

The double primed coordinate system must also be translated and rotated as indi- 
cated in sketch (b) and equations (5). 

x" = x cos 0 + y sin 8 - R 

y tq  + -x sin 8 + y cos e 

zO 
z" = z - 

so that 

(x cos e + y sin e - R + (-x sin e + y cos e )  sin 'p + (z  - zo) cos d2 = a l2 r (6) 

3 



To put everything in terms of the x, y, and z coordinates, the following relations 
are used: 

The resulting equation is 

sin q 1 -XY + XY 

2 y  ( 2  x + Y  2 y  

X Y t 
or 

It should be noted that the arctangent function subroutine will return only the principal 
value. Therefore, in the actual computations the quantity Fan-'(y/x) - w d  will  be 
treated as modulo 71. 

Equation (8b) is generalized to the following form: 

where cpG) is the helicoid surface function and has the following values: 
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q(?) = 0 on the helicoid surface 

> 0 outside the surface 

< 0 within the surface 

0 0 0  and where (i, j ,k) = (1,2,3), (2,3, l), or (3,1,2); x1,x2,x3 = x, y, z; and xi ,xj ,xk are 
coordinates of the origin of a translated coordinate system. 

Thus, the following data are normally supplied to describe the helical duct: 
0 0 0  i ,Xi  ,Xj ,xk,d,R,a. 

VALUES OF THE SURFACE FUNCTION 

The computer subroutine has been written to evaluate the surface function at  the 
point = + s 6  where Foot 6, and S are arguments supplied to the subroutine. Let 

Then 

The value q(3 of the surface function is obtained by substituting s from equation (10) 
into equation (9). 

NORMAL VECTOR 

The components of the normal vector n are 

-L 

n = 61,n2,n3) 
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and are calculated as 

and 

The partial derivatives are calculated as 

* A 

A , .  

where (ii, xj, xk) = [(xi - xy), (xj - xy), (xk - x ~ ) ]  and 

2 1/2 
e = ~ x j  - xy) + (xk - x;,2] 

u = ~ - R  

0 

x k - x k  - w(xi -XF) 
v = t a n  Gj -.p) 

h =  R2 
2 2  l + w R  
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I nter section s With Straight Li ne 

The intersection of a straight line with the helicoid is calculated by an iterative pro- 
cess. The assumption is made that the surface function is locally quadratic. Then the 
value of the function can be expressed by a truncated Taylor series as 

where q f i  is determined from equation (9), and the coefficient a q ( a / a S  is calculated 
from 

using equation (13) to compute the partial derivatives. 
The final coefficient is given by 

where 

a2d3 2 - = 2 h ~  
2 ax. 1 
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The net result is a quadratic equation for the distance S to the surface since the 
surface function q(3 must be zero at the intersection 

Let 

Then 

c =2q(E.) 

AS2 + 2BS + C + 0 

or  

-B + 6 dB2 - AC 
A 

S =  

The sign of the square root is determined by the ambiguity index 6 (of eq. (21b)) 
with respect to the region in which the ray tracing is performed. The ambiguity index 

8 



is defined as 

where I' 

for the square root so that 

is any point in the region. g 
Equation (21) is not used when IAC/B21 < A one-term expansion is then used 

This procedure eliminated convergence problems caused by un~zrflow in the vicinity 
of the intersection. 

The distance S to the intersection is used to compute a new reference point Et and 
the entire procedure is then repeated until the change in S is less than lom5 of the value 
already obtained. In general, only two iterations are needed. 

The changes required to incorporate the helical duct in FASTER are shown in the 
appendix. The input instructions a re  modified to include the following on card 2-2: 

ith surface has helix axis parallel to x-axis 0 0 zo i ,0,16,x ,Y 9 ,L ,R ,a  

ith surface has helix axis parallel to y-axis 

ith surface has helix axis parallel to z-axis 

0 0 0  i,0,17,Y ,z ,x , L , R , a  

i,0,18,z ,x , Y  , L , R , a  
0 0 0  

RESULTS AND DISCUSSION 

The duct analysis routine was verified by using it for the 20- and 100-centimeter- 
thick water slab cylindrical duct problem previously run as shown in figure 1 (ref. 1). 
Neutron number spectra essentially coincided with previously calculated spectra (05R 
and FASTER with cylindrical duct geometry) as seen in figure 2. The cylindrical duct 
was simulated with the helicoid geometry subroutines by making L, the pitch, equal to 
10 centimeters. Neutron number spectra at each detector point were calculated using 
1000 histories. Computer time was 20 minutes per detector point ,. approximately double 

5 
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that required for solution of the same problem using the cylindrical geometry routine, as 
expected because of the more complex geometric description of the cylindrical duct. 

Lewis Research Center, 
National Aeronautics and Space Administration, 

Cleveland, Ohio, June 2, 1969, 
126- 15-01-03-22. 
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APPENDIX - LISTING 

C TO INCORPORATE SUBROUTINE HELIX I N  FASTERr MAKF THE F 
C 
C SUBROUTINF LOCDUM 
C 
C INSERT AFTER FAST0151 

IF(MAX*GT*9) C A L L  H E L T X ( l r M A X I 9 , A ( l r K ) r X ~ X ~ O * 0 r ~ ~ ( K ) )  FAST0 151 
IF(MAXeGTe9) GO TO 1611 F A S ~  15  1 

C 
C SUBROLITINE GEOMIN 
C 
C REPLACE FAST0532 BY 

C INSERT AFTER FAST0579 
GO T0(232r233r235t3h0,255r2A2),NGT FAST0532 

GO TO 290 FAST0579 
202 DO 284 J -1~6  FAST0579 
2A4 A t J r I )  = A A ( J )  FAST0519 

NTP(1) = NEX + 9 FAST0579 

IF(MAXeGT,9) C A L L  H ~ L f X ( l r M A X a a r A ( l t K ) r A P M r A ~ M ~ ~ * ~ ~ F S T )  FAST0626 
fF(MAXrGT*9) GO TO 335 FAST0616 

335 CONTINUE FAST0619 

C INSERT AFTER FAST0616 

C INSERT AFTER FASTUB19 

C 
C SUBROUTINE TRADUM 
C 
C INSERT AFTER FAST2328 

IF(NTP(K)oLE,9) GO TO 198 F A S 2  2 2 8 
IF(MeGTo11 GO TO 192 FAST22211 
S f f l r K )  = STT FAST2228 
5 T f 2 r K )  STT + SP FAST2228 
C A L L  HELIX(3rKK*(NTP(K)a9),A(lrK)~%rCrSI(~rK)~~R) FAST2228 
IFtSR) 3 4 0 ~ 3 3 O r 3 3 0  F AS2228 

192 C A L L  H E C I X ( l r N T P ( K ) = 9 r A ( l r K ~ ~ X r C r ~ T T ~ F ~ T ~  FAST2328 
IF(FLOPT(KK)*FST) 3 4 0 ~ 3 4 0 r 3 9 0  FAST2228 

198 CONTINUE FAST22PR 
C 
C INE NOROUM 
C 
C 

C 
FAST2355 
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su e H  
C************************************+*****************************~*****H~LTXO~O 
C /JARG/ = 1, HELIX P ( I r  X I Y I Z )  HEL YXOOO 
C /JARG/ = 2, HELIX P ( 1 0  YrZrX)  0 
C /JARG/ = 3 r  HELIX P (I* Z t X I Y )  0 
C SIONlJARG) = AMBIGU 0 
C VARG(11 f REFERENCE VALUE OF X t I )  AT WHICH THETA = 0.0 HEL TX000 
C VARG12) = TRANSLATION OF HELIX AXIS I N  X ( J )  PIRECTTOM HEL T XO 0 0 
C VARG(3) = TRANSLATION OF HELIX AXIS T N  X ( K )  nIRECTTnN HEL 1 XOn 0 
C VARG(4) = PERIOD OF HELIX ALONG X ( 1 )  AXIS HEL 1 XOn 0 
C VARG(5) = RADIUS OF GYPATXON OF HFLIX PEPPENDXCULAR TO X ( I )  AXIS HEL f XO I, 0 
C VARG(6) = RADIUS OF HELIX CROSS SECTION 
C WARG(1) f X COORDINATE O F  O R I G I N  O F  R A Y  
C WARG(3)  = Y COORDINATE OF ORIGIN OF RAY 
C WARG(31  = b COORDINATE bF ORIGIN OF RAY 
C X A R G ( 1 9  = DIRECTION COSINE OF RAY WITH RFSPECT TO X CIXTS HEL TX000 
C XARG(2) = DIRECTIQN CQSINF OF RAY WITH RESPECT TO Y AXTS HEL TXOOO 
C XARG(3)  = trIRECTION COSINE OF RAY WITH RESPECT TO Z AXIS HFL 1x0 00 
C Y A R G ( 1 )  = DISTANCE ALREAQY TRAVERSFD &LONG RAY HEL T XO 00 
C YARG(2) = MAXIMUH DISTANCE ALONG RPY HEL T xo (1 n 
C IARG t l r  COMPUTE VALUE OF HELIX PETURNfn I N  2ARG (1 1 HEL 'x XOOO 

C I A R G  r: 3 r  COMPUTE DISTANCE TO HELIX RETURNFO I N  7 A R G f I )  HFL y xon n 
c***********************************************************************H€Lrxon0 

C I A R G  = 2, COMPUTE NORMAL VECTOR RETtJRNFD I N  7ARCf l )v* . . r fARG(3)  HELTXO00 

SURROUTINE H E L T X ( I A R G I J A R ~ ~ V A R ~ ~ , W A R G I X A R ~ ~ V A R ~ ~ ~ ~ R C )  HEL T X 0 1 0 
DXMENSION V A R G ( l ) r W A R ~ ( L ) r X A R ~ ( l ) ~ Y A R ~ ( l ) ~ 7 A R 6 ( 1 )  HEL I XO 20 
DTMENSION XZ(3) e X ( 3 )  r C ( 3 )  rCN(R) 

00 100 I z l r 3  HFL T X 0 50 
C t I )  = X A R G I I )  HFL P XOAO 
XZ(1)  = WARG(1)  + C ( X I * Y A R G ( l )  

NGT f I A R G  
I = IARS(JARG1 HEL S X l  00 
J = I + 3 - 3*tT /3)  HFLIYl 10 
K = J + 1 - 3*(J/3) HFL? X l 2 0  
TPL = TPI/VARG(4) HFL TXl3cf 
GAM = l rO/(TPL**2 + l,O/VflPG(5)**2) HFL T X l M  

110 D Y I  = X ( 1 )  - VARG(1) HFL 1x150 
DXJ = X ( J )  - VARG(2) HEL 'I X 160 
DXK = X ( K )  - V A R G ( 3 )  HFL TX 110 
USM = SQRT(DXJ**2 + DXK**?) HFLI  X l  @ O  
THE = 0.0 HELTX185 
IF(USWrGT,O~O) THE = A.TAN~(DXKPDXJ) TPL*DXI HF'L T X 190 
VSM = THE - TPI*FLOAT(IFIXf(THE + P I ) / T P X ) )  HFL T X2 0 11 
URG = USM - VARG(51 HEL T Y 2  10 
P H I  2: UBG**2 + GAM*VSM**2 - VARG(6)**2 HELfX220 
IF{NGT.Gf.l) GO TO 120 HEL fX230 
ZARG11) = P H I  HELTX240 
GO TO 990 

DATA K O U N T t P T ~ T P T / O ~ 3 , 1 4 1 ~ 9 2 7 ~ 6 ~ 2 ~ 3 l ~ S 3 /  

100 X ( 1 )  = X t ( 1 )  

T '= DXJ/USM 
T = DXK/USM 

CN t I) f -TPL*GAM*VSM 
CNtJ)  = UBG*CST - GAM*VSM*SMT/U5M 

K) = UBG*SNT + GAM*VSM*CST/USM HEL I X300 
DPH = 0.0 HELIX310 
IF(NGT.GT.2) GO TO 150 HELTX320 
00 130 I z l r 3  HELlX330 

130 DPH DPH + CN(I )**E HELfX340 
DPH = SQRTtDPH) HFL I X350 
DO 140 I = l r 3  HEL 1x361) 

140 t A R G ( 1 )  = CN(I)/DPH HELIX370 
GO TO 990 HEL TX380 
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HFL I X44 0 
HELT X450 
HEL 1 X4h0 
HEL XX470 
HELTX4PO 
HEL I X 4  RS 
HELTX490 
HEL T X 5 O O  
HELTX510 

HELXX530 
HEL T X54 fY 
HFL T Y550 
HFLfX560 
HEL 7 X570 

HEL T X ~ A O  
HEL 1x600 
HFL T Y 6  1 0 
HELIX630 
HELI X63O 
HFLTX640 
HFLfX658 
HELIX660 
HEL T X670 
HFL 7 X680 
HELTX6Q0 
HEL r x7 n 0 
HEL 3x716 
HFL 7x770 
HEL 7x730 
HEL 1x741) 
HFLIX750 
HELTX760 
HELIX770 
HFLI  X7RO 

HEL 7 X800 
HFL 1x8 10 
HELIX820 
HELIX830 
HFL 7x840 
HELXX850 
HSL 1x860 
Hf?LfX870 
HELTX880 
HEL rX8q0 
Hf%YX900 
HEL T X910 
HEL T X 9 2 0 
HELfX930 
HEL T X940 
Ht'rtrxssa 

H E L T X ~ ? ~  

HELTXSRO 

HFL 1x790 
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